Hegskolen i Telemark

Telemark University College
Department of Electrical Engineering, Information Technology and Cybernetics

Tutorial

LABVIEW MATHSCRIPT

HANS-PETTER HALVORSEN, 2010.05.25

P LabVIEW MathScript

File Edit “iew Operate Tools Window Help
Output Window | Variables | SeriPt | History |
ans = A
b | ‘J'D | CeitemplLabWIEW Datalsimple.m |
-0.95892
Function [r] = simple(a) ~
S5 t = sin{a)
i =
1 2
3 4
HFinvid)
ans =
-2 1
1.5 -0.5
s>det (4]
ans =
-z 3
—
Command Window
-~
>)
00 1de Line: 3, Column: 11

mFaculty of Technology, Postboks 203, Kjglnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 3557 50 00 Fax: +47 35 57 54 01

JL O HIH

PREFACE

This document explains the basic concepts of using LabVIEW MathScript.

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

What is LabVIEW?

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and development
environment for a visual programming language from National Instruments. The graphical language is named
IlGlI.

What is MATLAB?
MATLAB is a tool for technical computing, computation and visualization in an integrated environment.

MATLAB is an abbreviation for MATrix LABoratory, so it is well suited for matrix manipulation and problem
solving related to Linear Algebra.

MATLAB offers lots of additional Toolboxes for different areas such as Control Design, Image Processing, Digital
Signal Processing, etc.

What is MathScript?

MathScript is a high-level, text- based programming language. MathScript includes more than 800 built-in
functions and the syntax is similar to MATLAB. You may also create custom-made m-file like you do in MATLAB.

MathScript is an add-on module to LabVIEW but you don’t need to know LabVIEW programming in order to use
MathScript. If you want to integrate MathScript functions (built-in or custom-made m-files) as part of a
LabVIEW application and combine graphical and textual programming, you can work with the MathScript
Node.

In addition to the MathScript built-in functions, different add-on modules and toolkits installs additional
functions. The LabVIEW Control Design and Simulation Module and LabVIEW Digital Filter Design Toolkit
install lots of additional functions.

You can more information about MathScript here: http://www.ni.com/labview/mathscript.htm

How do you start using MathScript?

You need to install LabVIEW and the LabVIEW MathScript RT Module. When necessary software is installed,
start MathScript by open LabVIEW:

http://home.hit.no/~hansha/�
http://www.ni.com/labview/mathscript.htm�

B! Getting Started
Elle Operate Tools Help

& LabVIEW
New
“al, Blark v1
J@, Empty Project

E Real-Time Project
3 More...

Open
[&1 #:...\Alr Heater|HIL Simulation.lvpraj
[&l M. \Wocabulary\Wocabulary. lvproj

sl M:t...\CodetSlope and Intercept.vi
sl M. \SubWTICodelLinear Scaling vi
[l Ciitmpltest2.vi

sl M:\...\Slope and Intercept.vi

3 Browse...

Targets

[SS1[ES)

Licensed for Professional wersion

Latest from ni.com
News
Technical Content
Example Programs
Training Resources
Online Support
Discussion Farums
Code Sharing
KnowledgeBase
Request Support
Help
Getting Started with LabVIEW
LabYIEW Help

List of All Nevs Features

‘Muhwle Project vl [ao]

'-\ Find Examples. .,

In the Getting Started window, select Tools -> MathScript Window...:

Getting Started

File Operate Wi Help

= mimoem

SR

MNew

Measurement & Automation Explarer, ..

Insktrumenktakion

Real-Tim

D3iC Madule
IMAC Vision

» Latest from ni.com

JL O HIH

TABLE OF CONTENTS

L =] i 1oL T TP TP PRSP PR PPTOTPPPOT i
TaDIE OF CONTENES ...ttt st st s bt e bt e ettt e s e s b e e s b e e r e e ne st e saeesreesneenneenes iv
1 INtroduction 0 LADVIEW ...co.eiiiiiiiecieie ettt et s s st sre e sn e n e eseesneenreens 1
1.1 DatafloOW PrOZIramMMING.. ... it e e e e et e e e e e e st aa e e e e e e eeeeabbabeeaeeeesansaaaeeeaeeseansraaenaaaesan 1
1.2 (€T o] ol o1 I T oT={=10 41 a 211 o= SR URPUNE 1
1.3 BT LS .ttt bbb et b e e ne e s b e e e be e s b e e e neesares 1
1.4 LabVIEW MathScript RT MOGUIEccueiieeciiie ettt e et e et e e et e e et e e e ennae e e s nre e e ennaeeeennees 2

2 LabVIEW MathScript RT MOGUIEcooueieieeciiie ettt sttt e e et e s eate e e et e e e e snts e e esnsaeeesnsseeesnsaeeennnnes 3
3 LADVIEW MathSCriPt.ceceuiieeciiieicieee ettt e ettt e ettt e e et e e e sttt e e et e e e e e e e e eantaeeeansseeesssseeeensseesanseeessnsseeesnssneesansnes 4
3.1 INEFOTUCTION ..ttt et e b e e b e bt e bt e s b et e bt e s b e e e bt e s beeebeesabeeeaneesares 4
3.2 [L= o T PR PP 6
3.3 Y1010 [T PP PP 6
34 USEfUI COMMANTDS ...ttt et e re e seeesreesreen e et e esnesnnenneens 9
(07T T=8 (¥ g Yot oY s o TNV = 1 0 1Yol o X S 9
User-Defined FUNCLIONS IN IMATNSCIIPTciiiiiie ettt eete e e e et e e e ata e e e eneae e e srreeeentaeeennnnes 10

) ol o) 3 11
3.5 FIOW CONEION ittt ettt et s e et e s b e e sabee st eeeabeesabeesaneesabeesaneenas 13
35.1 If-€1S@ STAtEMENTeiiiii ettt et s be e e sbe e s b s e 13

35.2 SWitch and Case StAateMENTcoiiiiiiiiiie et 13

3.5.3 [0l Uo o R 14

3.54 LAY o 11 =N [Yo« F RS SR 14

3.6 2] o T o =SSR 15

4 LiNEar AlGEbra EXAMPIES. ueeiiiieee ettt e e et e e e e e e et e e e e e e e e e eaat b e e e e e e e e e antbaeeaeeeeeanraaraaaaeeaanres 17
4.1 Y=ot {0 PPN 17
4.2 Y=L g ol TSP PP OPRP PPN 18
4.2.1 LI L1 1o 1] 18

v Table of Contents
4.2.2 (D12 o - | PR 18

423 B2 ={U] - P SSSN 19

4.2.4 (1Y A g Y 01 1 dT o] [ToF= Y d o o ST 20

425 Y L g Y [o 14 Te] o HR T T TSP P RO PPTO PRI 21

4.2.6 DETEIMINANT. ...t 21

4.2.7 INVEISE MAtIICES .uviiiiiiiiii it 22

4.3 T N [0TSR 23
4.4 SOIVING LINEAr EQUATIONS .. .uviiiiiiieecieee ettt e et e e et e e et e e e st e e e eneaeessnnaeeesnsseeeenseeeennnnes 24
4.5 LU FACLOFIZATION ettt sttt e et e s e st e s b e e eabeesabeesaneesabeesaneenas 25
4.6 The Singular Value DecompPoSition (SVD)ccicuieiieciiie ettt eeette e et eeetre e e eeatee e e aaeeeeraeaeeans 27
4.7 COMIMEANDS ..ttt ettt ettt s b e et e s bt e e bt e s bt e e bee s bt e e bt e s beeeabeesab e e e bt e s beeeabeesabeeenbeesabeeenneesares 27

5 Control Design and SIMUIGTIONc.vvii it e e e e e et r e e e e e e e e snteeeesnsaeesennaeeesnreeean 28
5.1 State-space models and Transfer FUNCLIONSccciiii e e 28
5.1.1 PID ettt et h e bRttt e e e b e e Rt e R e r e e nesaeesreenreenreeaes 29

5.1.2 N) o= Tol <l g Voo {1 IO SRR 30

5.1.3 Transfer FUNCLION ..ot 31

5.1.4 FIrSt OFdEr SYSTEIMS ...eiiiiiiei ittt e e e e e ettt e e e e e e e e e et beeeeeeseasastbaaeeaaeeesnsreaeeaaaeann 32

5.1.5 Y TeleTa Yo I @40 L=T iYLy =T o o[- 32

5.1.6 LYo LR o o] o)] 0 4 o Yo R 34

5.2 Frequency RESPONSE ANGIYSIS.....cuuiiiiiieeeeiiieeeiieesrteeeeetteeesae e e s treeessstaeeesssaeeessseeesassseesassseessnsseenanes 35
5.2.1 L2 To Yo LN D IT-Y = =1 o PR 36

TN RESPONSE i a e e e e e 40

6 1Y ool T o] o N o Yo =TSP UUPPRRN 42
6.1 Transferring MathScript Nodes between COMPULETScoeeiieiiiiiiiieee e e e e e earreee e 43
6.2 T T o 1= SRR 44
6.3 D= o] < 47

7 IMATLAB SCIIDE 1ttt ettt ettt st sttt ettt se s b e b et e n e s e s aeesreenb e e r e esn e eaeees e e b e enneeresnnesmnes 48
Appendix A — MathScript Functions for Control and SImulationcccceeeiiiiiiii e 49

Tutorial: LabVIEW MathScript

vi

Table of Contents

Tutorial: LabVIEW MathScript

:_W‘P 1@ Pl\l Iﬁ’.ﬁ%f
1 INTRODUCTION TO LABVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and development

environment for a visual programming language from National Instruments. The graphical language is named
"G". Originally released for the Apple Macintosh in 1986, LabVIEW is commonly used for data acquisition,
instrument control, and industrial automation on a variety of platforms including Microsoft Windows, various
flavors of UNIX, Linux, and Mac OS X. The latest version of LabVIEW is version LabVIEW 2009, released in
August 20009. Visit National Instruments at www.ni.com.

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”. LabVIEW offers lots of
additional Add-Ons and Toolkits.

1.1 DATAFLOW PROGRAMMING

The programming language used in LabVIEW, also referred to as G, is a dataflow programming language.
Execution is determined by the structure of a graphical block diagram (the LV-source code) on which the
programmer connects different function-nodes by drawing wires. These wires propagate variables and any
node can execute as soon as all its input data become available. Since this might be the case for multiple nodes
simultaneously, G is inherently capable of parallel execution. Multi-processing and multi-threading hardware is
automatically exploited by the built-in scheduler, which multiplexes multiple OS threads over the nodes ready
for execution.

1.2 GRAPHICAL PROGRAMMING

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle. LabVIEW
programs/subroutines are called virtual instruments (VIs). Each VI has three components: a block diagram, a
front panel, and a connector panel. The last is used to represent the VI in the block diagrams of other, calling
Vls. Controls and indicators on the front panel allow an operator to input data into or extract data from a
running virtual instrument. However, the front panel can also serve as a programmatic interface. Thus a virtual
instrument can either be run as a program, with the front panel serving as a user interface, or, when dropped
as a node onto the block diagram, the front panel defines the inputs and outputs for the given node through
the connector pane. This implies each VI can be easily tested before being embedded as a subroutine into a
larger program.

The graphical approach also allows non-programmers to build programs simply by dragging and dropping
virtual representations of lab equipment with which they are already familiar. The LabVIEW programming
environment, with the included examples and the documentation, makes it simple to create small applications.
This is a benefit on one side, but there is also a certain danger of underestimating the expertise needed for
good quality "G" programming. For complex algorithms or large-scale code, it is important that the
programmer possess an extensive knowledge of the special LabVIEW syntax and the topology of its memory
management. The most advanced LabVIEW development systems offer the possibility of building stand-alone
applications. Furthermore, it is possible to create distributed applications, which communicate by a
client/server scheme, and are therefore easier to implement due to the inherently parallel nature of G-code.

1.3 BENEFITS

One benefit of LabVIEW over other development environments is the extensive support for accessing
instrumentation hardware. Drivers and abstraction layers for many different types of instruments and buses

1

http://www.ni.com/�

2 Introduction to LabVIEW

are included or are available for inclusion. These present themselves as graphical nodes. The abstraction layers
offer standard software interfaces to communicate with hardware devices. The provided driver interfaces save
program development time. The sales pitch of National Instruments is, therefore, that even people with limited
coding experience can write programs and deploy test solutions in a reduced time frame when compared to
more conventional or competing systems. A new hardware driver topology (DAQmxBase), which consists
mainly of G-coded components with only a few register calls through NI Measurement Hardware DDK (Driver
Development Kit) functions, provides platform independent hardware access to numerous data acquisition and
instrumentation devices. The DAQmxBase driver is available for LabVIEW on Windows, Mac OS X and Linux
platforms.

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

1.4 LABVIEW MATHSCRIPT RT MODULE

The LabVIEW MathScript RT Module is an add-on module to LabVIEW. With LabVIEW MathScript RT Module
you can:

e Deploy your custom .m files to NI real-time hardware

e Reuse many of your scripts created with The MathWorks, Inc. MATLAB® software and others
e Develop your .m files with an interactive command-line interface

e Embed your scripts into your LabVIEW applications using the MathScript Node

Tutorial: LabVIEW MathScript

http://home.hit.no/~hansha/�

ulrl@h\u\ﬁiﬁﬁ:
2 LABVIEW MATHSCRIPT RT MODULE

You can work with LabVIEW MathScript through either of two interfaces: the “LabVIEW MathScript Interactive
Window” or the “MathScript Node”.

You can work with LabVIEW MathScript RT Module through both interactive and programmatic interfaces. For
an interactive interface in which you can load, save, design, and execute your .m file scripts, you can work with
the “MathScript Interactive Window”. To deploy your .m file scripts as part of a LabVIEW application and
combine graphical and textual programming, you can work with the “MathScript Node”.

The LabVIEW MathScript RT Module complements traditional LabVIEW graphical programming for such tasks
as algorithm development, signal processing, and analysis. The LabVIEW MathScript RT Module speeds up
these and other tasks by giving users a single environment in which they can choose the most effective syntax,
whether textual, graphical, or a combination of the two. In addition, you can exploit the best of LabVIEW and
thousands of publicly available .m file scripts from the web, textbooks, or your own existing m-script
applications. LabVIEW MathScript RT Module is able to process your files created using the current MathScript
syntax and, for backwards compatibility, files created using legacy MathScript syntaxes. LabVIEW MathScript RT
Module can also process certain of your files utilizing other text-based syntaxes, such as files you created using
MATLAB software. Because the MathScript RT engine is used to process scripts contained in a MathScript
Windows or MathScript Node, and because the MathScript RT engine does not support all syntaxes, not all
existing text-based scripts are supported.

LabVIEW MathScript RT Module supports most of the functionality available in MATLAB, the syntax is also
similar.

For more details, see http://zone.ni.com/devzone/cda/tut/p/id/3257

http://zone.ni.com/devzone/cda/tut/p/id/3257�

JL O HIH

3 LABVIEW MATHSCRIPT

3.1 INTRODUCTION

Requires: MathScript RT Module

How do you start using MathScript? You need to install LabVIEW and the LabVIEW MathScript RT Module.
When necessary software is installed, start MathScript by open LabVIEW:

B! Getting Started E“El@

Elle Operate Tools Help

rrrrrrr

ﬁ La bVI EW Licensed For Professional Wersion

New Latest from ni.com
“al, Blark v1 Mlews
), Empty Praject Technical Content
E Real-Time Project Example Programs
3 More...
Training Resources
Online Support
Open

Discussion Farums
[M\, \8ir Heater\HIL Simulation.lvproj

[&) M. \WocabularAocabulary. heproj Lebiaig

KnowledgeBase
[l m:...\CodeSiope and Intercept.vi Request Support
[l M\, \SubVICodetLinear Scaling.vi Help

[l Ciitmpltest2.vi
sl M:\...\Slope and Intercept.vi

3 Browse...

Getting Started with LabVIEW
LabV¥IEW Help

List of All Nevs Features

Targets

\Muhwle Praject "l [Go] Q_ Find Examples. ..

In the Getting Started window, select Tools -> MathScript Window...:

B! Getting Started
Fil=: Cperate BIEEEN Help

Measurement & Aukamation Explarer, .
wrmieend Insktrumenkakion 3

l Real-Time [Mod 3
ORI

| MathScript
D= Module 3
MNew IMAG Yision b Latest from ni.com

The “LabVIEW MathScript Window” is an interactive interface in which you can enter .m file script commands
and see immediate results, variables and commands history. The window includes a command-line interface
where you can enter commands one-by-one for quick calculations, script debugging or learning. Alternatively,
you can enter and execute groups of commands through a script editor window.

LabVIEW MathScript

As you work, a variable display updates to show the graphical / textual results and a history window tracks your
commands. The history view facilitates algorithm development by allowing you to use the clipboard to reuse

your previously executed commands.

You can use the “LabVIEW MathScript Window” to enter commands one at time. You also can enter batch
scripts in a simple text editor window, loaded from a text file, or imported from a separate text editor. The
“LabVIEW MathScript Window” provides immediate feedback in a variety of forms, such as graphs and text.

15 Labwie i ripd

Variables |
Seript/

Command
History

P R Wew (peds Del Sdes ey
Cngad Siradoss Parabies b
Per ey, eniet “balp classes - - = l’ x
Textual
| Output -
MathScript
Window
]

Command i

- |
FTE L |, Collas |

Example:

Tutorial: LabVIEW MathScript

6 LabVIEW MathScript

P LabVIEW MathScript

File Edit Wew Operate Tools Window Help
Output Window | Variables | Scripk | Histary |
ans = a
D | 'J'D | CiitempiLabYIEW Datalsimple.m
-0.95892
function [r] = simplefa) A
_— r = sinia)
A=
1 2
3 4
Frinv(d)
ans =
-2 1
1.5 =0.5
>>det(4)
ans =
-2 F
— 1
Comnrmand Window
~
v L]
|9.D Ide Line: 3, Column: 11

[End of Example]

3.2 HELP

You may also type help in your command window

\
\Y
=y
D
-_—
©
©
-_—
o
r~+

3.3 EXAMPLES

| advise you to test all the examples in this text in LabVIEW MathScript in order to get familiar with the program
and its syntax. All examples in the text are outlined in a frame like this:

This is commands you should write in the Command Window.

You type all your commands in the Command Window. | will use the symbol “>>” to illustrate that the
commands should be written in the Command Window.

Tutorial: LabVIEW MathScript

7 LabVIEW MathScript

Example: Matrices

Defining the following matrix

The syntax is as follows:

If you, for an example, want to find the answer to

a+ b,wherea =4,b =3

MathScript then responds:

ans =

MathScript provides a simple way to define simple arrays using the syntax: “init:increment:terminator”. For
instance:

The code defines a variable named array (or assigns a new value to an existing variable with the name array)
which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1 (the init value),
increments with each step from the previous value by 2 (the increment value), and stops once it reaches (or to
avoid exceeding) 9 (the terminator value).

The increment value can actually be left out of this syntax (along with one of the colons), to use a default value
of 1.

Tutorial: LabVIEW MathScript

8 LabVIEW MathScript

The code assigns to the variable named ari an array with the values 1, 2, 3, 4, and 5, since the default value of 1

is used as the incrementer.

Note that the indexing is one-based, which is the usual convention for matrices in mathematics. This is atypical

for programming languages, whose arrays more often start with zero.

Matrices can be defined by separating the elements of a row with blank space or comma and using a semicolon

to terminate each row. The list of elements should be surrounded by square brackets: []. Parentheses: () are
used to access elements and subarrays (they are also used to denote a function argument list).

16 3 213
. 51011 8
9 6 712
41514 1
> A2,3)
ians=

BT

Sets of indices can be specified by expressions such as "2:4", which evaluates to [2, 3, 4]. For example, a
submatrix taken from rows 2 through 4 and columns 3 through 4 can be written as:

>> A(2:4,3:4)
ans =
11 8

7 12

A square identity matrix of size n can be generated using the function eye, and matrices of any size with zeros
or ones can be generated with the functions zeros and ones, respectively.

1 >> eye(3)
!ans=

1100

Tutorial: LabVIEW MathScript

9 LabVIEW MathScript

>> zeros(2,3)
ans =
00O
00O

>> ones(2,3)

3.4 USEFUL COMMANDS

Here are some useful commands:

Command Description
eye(x), eye(x,y) Identity matrix of order x
ones(x), ones(x,y) A matrix with only ones
zeros(x), zeros(x,Yy) A matrix with only zeros
diag([x y z1) Diagonal matrix
size(A) Dimension of matrix A
A~ Inverse of matrix A

CALLING FUNCTIONS IN MATHSCRIPT

MathScript includes more than 800 built-in functions that you can use, e.g., in a previous task you used the plot
function.

Example: Built-in Functions

Given the vector:
>>x=[1 2 5 6 8 9 3]

- Find the mean value of the vector x.

Tutorial: LabVIEW MathScript

10 LabVIEW MathScript

- Find the minimum value of the vector x.
- Find the maximum value of the vector x.
The MathScript Code is:

x=[1 256 8 9 3]

mean(X)
min(x)

[End of Example]

USER-DEFINED FUNCTIONS IN MATHSCRIPT

MathScript includes more than 800 built-in functions that you can use but sometimes you need to create your
own functions.

To define your own function in MathScript, use the following syntax:

function outputs = function_name(inputs)
% documentation

Here is the procedure for creating a a user-defined function in MathScript:

k= LabVIEW MathScript

— . Save your functionas a .m file
IHE Edit View Operate Tools Window Help
e I Crkell \ yarizt 2 'Scrint | History |
Mew, .. a
Open... ctr+0] | @ J'D | C:'{tmpiMathSmpt'{add.m|
Close Chrl+
Eluse al Function kotal = add(x,¥) 1 -~
- % this function add 2 numbers Create your function in
total = x+ty; e
save Crkes the Script window
Save As... 0 MathScript —
pen Mathocrp 4)| Add Search Folder
Mew Script Editar Properties for your Code
Mew Project
Open Project. .. 3
~ I aths
|
Recent Projects S"‘("_;'::;:::‘ﬁ":‘:" E u
Recent Files » \ ETE
Exit

Add your folder where your
code s located here

‘Wharking drectory
<iteiplhsa vt
The first directory in he Search pathis] for . s it spedlies the Warling drectery.

he: changes
Command Window
add(3,5]| 5 4
(s) o] [coa | (]
Test your function in the
Command window 2 -
|9.0F3 | e Lime: 1, Column: 18

Tutorial: LabVIEW MathScript

11 LabVIEW MathScript

b Lab¥IEW Mathscript

Fie Edt Yew QCperote Jooks Wrdow Hep
gt Wirsdlow Variakiers 'SGH History
Furction v = cak_snrage(s,))
Saxe2: | WaThes function cakulstes the average of I fumbers
H wv=lxylE
e
x =
2
Payed
¥
1
ShEecale_SVErage(x,y)
e
3
-
Comenand Window
zwcalc_sverage (x,¥] &
- -
T | || (Lo 1, ok 72

SCRIPTS

A script is a sequence of MathScript commands that you want to perform to accomplish a task. When you have
created the script you may save it as a m-file for later use.

& LabVIEW MathScript

Fle Edt Vew Opersts Tools Window Help
Qutput Yindow Wariables | Script | History
R |
3 b | B | Mk Worki Tutorials\LabWIEWALSbYIEW MathS[r\pt\Cude\Examp\es\MathS[r\pt\‘
A l; L]
>3 4 |
nean(x) oty
ans =
4.8571
Run the Script
Sy Type commands in your
ans - script here
a
P Plot 1
Fle Items Tocls Help
Graph
1
0,5-] d
-
0- L
0,5
T e S S S A Sl
0 1 z 3 4 5 6 7 8 % 10
] ~|
o I || [Column: 1

You may also have multiple Script Windows open at the same time by selecting “New Script Editor” in the File
menu:

Tutorial: LabVIEW MathScript

12

LabVIEW MathScript

F! Lab¥IEW MathScript

N Edit Yiew Cperabe Tools Window Help

Mew Y1
Mew
open...
Close
Clase all

Chrl+h

‘ Variables | Script | History |

Crrl+0
Crrl+w

Save
Save fs...

Chrl+s

Mew Project
Open Project. ..

LabMIEW MathScript Properties Ctrl+1

Recent Projects
Recent Files

Exit

ans =

I8 T
1.65831

1.65831
1.65831

J'D ‘ MiiWorkiLabiLab WorkiMathScript LabiSolutionsiCoded Task 7y

Command Window

|

ol

9.0F3

Line: 14, Column: 1
/

This gives:

B Seript
File Edit

o

7 Vatiables W|
8 J'D ‘ MW orkiLabiLab WorkiMathScripk LablSalutions|Code! Task 74 |
[]
|
)
o)
l:|IdIE J| Line: 14, Calumn: 1

Tutorial: LabVIEW MathScript

13 LabVIEW MathScript

3.5 FLOW CONTROL

This chapter explains the basic concepts of flow control in MathScript.
The topics are as follows:

o If-else statement

e Switch and case statement
e Forloop

e While loop

3.5.1 |F-ELSE STATEMENT

The if statement evaluates a logical expression and executes a group of statements when the expression is
true. The optional elseif and else keywords provide for the execution of alternate groups of statements. An end
keyword, which matches the if, terminates the last group of statements. The groups of statements are
delineated by the four keywords—no braces or brackets are involved.

Example: If-Else Statement

Eif n>2

M = eye(n)
elseif n < 2

M = zeros(n)
else

M = ones(n)

[End of Example]

3.5.2 SWITCH AND CASE STATEMENT

The switch statement executes groups of statements based on the value of a variable or expression. The
keywords case and otherwise delineate the groups. Only the first matching case is executed. There must always
be an end to match the switch.

Example: Switch and Case Statement

i switch(n)

! case 1

! M = eye(n)

: case 2

! M = zeros(n)

Tutorial: LabVIEW MathScript

14 LabVIEW MathScript

| case 3 |
; M = ones(n)

[End of Example]

3.5.3 FOR LOOP

The for loop repeats a group of statements a fixed, predetermined number of times. A matching end delineates
the statements.

Example: For Loop

3
1l
a1

Efor n=1m
r(n) = rank(magic(n));

[End of Example]

3.5.4 WHILE LOOP

The while loop repeats a group of statements an indefinite number of times under control of a logical
condition. A matching end delineates the statements.

Example: While Loop

i whilem > 1
m=m-1;

zeros(m)

[End of Example]

Tutorial: LabVIEW MathScript

15 LabVIEW MathScript

3.6 PLOTTING

This chapter explains the basic concepts of creating plots in MathScript.
Topics:

e Basic Plot commands

Example: Plotting

X = 0:pi/100:2*pi;

sin(x);

<
1l

plot(x,y)

produces the following figure of the sine function:

(EE)

L&

na

[End of Example]

Example: Plotting

' [X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);

» mesh(X,Y,F);

Ef = sinc(sqrt((X/pi) ."2+(Y/pi)."2));

Tutorial: LabVIEW MathScript

16 LabVIEW MathScript

- axis([-10 10 -10 10 -0.3 1])
éxlabel('{\bfx}')

ylabel ("{\bfy}")

' zlabel ("{\bfsinc} ({\bfR})")

hidden off i

]
i
g I

This code produces the following 3D plot:

mim (M
£ 8 B

[End of Example]

Tutorial: LabVIEW MathScript

ulfl@h\ll\ﬁ;ﬁi L
4 LINEAR ALGEBRA EXAMPLES

Requires: MathScript RT Module

Linear algebra is a branch of mathematics concerned with the study of matrices, vectors, vector spaces (also
called linear spaces), linear maps (also called linear transformations), and systems of linear equations.

MathScript are well suited for Linear Algebra.

4.1 VECTORS

Given a vector x

x = € R"

Example: Vectors

Given the following vector

[End of Example]

The Length of vector x:

Il = VoTx = [453 + 4 23

Orthogonality:

17

18 Linear Algebra Examples

4.2 MATRICES

Given a matrix A:

aiq Aim
A= i l € R™M
an] anm
Example: Matrices
Given the following matrix:
_ 10 1
A= -2 —3]
' >> A=[0 1;-2 -3]
A = |
: 0 1
.
i -2 -3 |
[End of Example]
4.2.1 TRANSPOSE
The Transpose of matrix A:
a1 Qan1
AT =I : : c Rmxn
A1m Anm

Example: Transpose

[End of Example]

4.2.2 DIAGONAL

Tutorial: LabVIEW MathScript

19 Linear Algebra Examples

The Diagonal elements of matrix A is the vector

a1
a .
diag(A) = | ;°| € Rp=min(m)
App
Example: Diagonal
Find the diagonal elements of matrix A:
T>>diag(A)
L ans = !
| |
| 0 |
i -3 ;
[End of Example]
The Diagonal matrix A is given by:
A 0 0
A= 0 ﬂ‘z 0 € Rnxn
0 O An
Given the Identity matrix /:
1 0 0
[= 0 1 0 e pnxm
0 0 1

Example: Identity Matrix

§>> eye(3) i
ans =
| 1 0 0 |
| 0 1 0 |
| 0 0 1 |

[End of Example]

4.2.3 TRIANGULAR

Tutorial: LabVIEW MathScript

20 Linear Algebra Examples

Lower Triangular matrix L:

Upper Triangular matrix U:

4.2.4 MATRIX MULTIPLICATION
Given the matrices 4 € R™™ and B € R™P, then

C =AB € R™P

where
n
Gk = Z ajby
=1

Example: Matrix Multiplication

Matrix multiplication:
>>A=[0 1;-2 -3]1
A=
i 0 1 |
. 2 -3 |
>> B=[1 0;3 -2]
B =
| 1 0 |
i 3 -2 i
| >> A*B |
! ans = I
3 2
i -11 6 i
L o o o o o o o o o o e e e e e e e e e o= |

[End of Example]

Note!

AB # BA

A(BC) = (AB)C

Tutorial: LabVIEW MathScript

21 Linear Algebra Examples

(A+B)C = AC + BC

C(A+B)=CA+CB

4.2.5 MATRIX ADDITION
Given the matrices 4 € R™™ and B € R™™, then

C=A+Be€ R™m

Example: Matrix Addition

[>> A=[0 1;-2 -3]
1 >> B=[1 0;3 -2]

| >> A+B

! ans =

1 1
: 1 -5

[End of Example]

4.2.6 DETERMINANT

Given a matrix A € R™", then the Determinant is given:

det(4) = |A]

Given a 2x2 matrix

a1 Qg2
A= [] € R**?
az1 Qz2

Then

det(4) = |A| = aj1a,; — az10a4;

Example: Determinant

Tutorial: LabVIEW MathScript

22 Linear Algebra Examples

>> det(A)
ans =

Notice that
det(AB) = det(A) det(B)
and
det(AT) = det (4)

[End of Example]

Example: Determinant

| >> det(A*B)

i ans = ;
-4 |
- >> det(A)*det(B) §
ans = '
-4

i>> det(A")

lans = !
2
| >> det(A) |
I ans = |
i 2 i

[End of Example]

4.2.7 INVERSE MATRICES
The inverse of a quadratic matrix A € R™" is defined by:

A—l

AAT =A"14A=1

For a 2x2 matrix we have:

a1 Qg2
a=| | e R
az1 Az

Tutorial: LabVIEW MathScript

23 Linear Algebra Examples

The inverse A1 is given by

1 a —-a
-1 22 12 2x2
det (4) [_a21 a1] € R

Example: Inverse Matrices

A= i
; 0 1

2 -3

§>> inv(A)

; ans = I
. -1.5000 -0.5000 '
LBO000 0 |

[End of Example]

Notice that:
AAT ' =A4"14=1]
-> Prove this in MathScript

4.3 EIGENVALUES

Given A € R™™", then the Eigenvalues is defined as:
det(Al —A) =0

Example: Eigenvalues

A = i
| 0 1
2 -3
>> eig(A)
! ans = !
1 |
2 ;

[End of Example]

Tutorial: LabVIEW MathScript

24 Linear Algebra Examples

4.4 SOLVING LINEAR EQUATIONS

Given the linear equation

Ax=b
with the solution:
x=A"1b
(Assuming that the inverse of A exists)
Example: Solving Linear Equations
Solving the following equation:
The equations
X, +2x, =5

3x1 + 4x2 = 6
may be written

Ax=b
BN
where
-l

L]

The solution is:

Tutorial: LabVIEW MathScript

Linear Algebra Examples

In MathScript you could also write “x=A\b”, which should give the same answer. This syntax can also be used

when the inverse of A don’t exists.

[End of Example]

Example: Solving Linear Equations

>> A=[1 2;3 4;7 8]
>> x=inv(A)*b

1 ??? Error using ==> inv

Matrix must be square.

i >> x=A\b

X =
-3.5000
4.1786

[End of Example]

4.5 LU FACTORIZATION

LU factorization of A € R™™ s given by

where

L is a lower triangular matrix

U is a upper triangular matrix

The MathScript syntax is [L,U]=1u(A)

Example: LU Factorization

A=LU

§>> A=[1 2;3 4]

5> [L,UT=Iu(A)

L =

0.3333 1.0000

Tutorial: LabVIEW MathScript

26 Linear Algebra Examples

3.0000 4.0000

[End of Example]

Or sometimes LU factorization of A € R™™ s given by
A=LU=LDU

where

D is a diagonal matrix

The MathScript syntax is [L,U,P]=1u(A)

Example: LU Factorization

>> [L,U,P]1=1u(®h)

i i
-
1.0000 0
0.3333 1.0000
-
3.0000 4.0000
0 0.6667
o 1
L0

[End of Example]

Tutorial: LabVIEW MathScript

27 Linear Algebra Examples

4.6 THE SINGULAR VALUE DECOMPOSITION (SVD)

The Singular value Decomposition (SVD) of the matrix A € R™™ s given by
where

U is a orthogonal matrix

Vis a orthogonal matrix

S is a diagonal singular matrix

Example: SVD Decomposition

>> A=[1 2;3 4];
>> [U,S,V] = svd(A)
U=

-0.4046 -0.9145

-0.9145 0.4046

5.4650 0

-0.5760 0.8174

-0.8174 -0.5760

[End of Example]

4.7 COMMANDS

Command Description

[L,U]=1uCh) LU Factorization
[L,U,P1=1uCAh)

[U,S,V] = svd(A) Singular Value Decomposition (SVD)

Tutorial: LabVIEW MathScript

:_W‘P 1@ Pl\l Iﬁ’.ﬁ%f
5 CONTROL DESIGN AND SIMULATION

Using LabVIEW MathScript for Control Design purposes you need to install the “Control Design and Simulation
Module” in addition to the “MathScript RT Module” itself.

Use the Control Design MathScript RT Module functions to design, analyze, and simulate linear controller
models using a text-based language. The following is a list of Control Design MathScript RT Module classes of
functions and commands that LabVIEW MathScript supports.

Getting help about MathScript functions regarding the Control Design Toolkit (CDT), type “help cdt” in the
Command Window in the MathScript environment.

The following function classes exist:

Class Description

cdops Arithmetic operator functions

cdplots ¥ plane functions

cdzolvers [Equation solver functions

connect |Model interconnection functions

construct | Model construction functions

convert |Model conversion functions

dvnchar |Dvwnamic characteristics functions

frarsp Frequency response analysis functions

info Maodel information functions

reduce Model reduction functions

zzanalz |State-zpace analysis functions

zzdezign |State-feedback design functions

timerezp [Time response analysis functions

We will go through some of the classes and function in detail below:

5.1 STATE-SPACE MODELS AND TRANSFER FUNCTIONS

MathScript offers lots of functions for defining and manipulate state-space models and transfer functions.

Class: contruct

Description:

Use functions in the construct class to construct linear time-invariant system models and to convert between
model forms.

Below we see the different functions available in the construct class:

28

29 Control Design and Simulation

Function |Description

drandss Generates a random discrete state-space system model

drandtf Generates a discrete random system model in transfer function form

drandzplk |Generates a discrete random system model in zero-pole-gain (ZPK) form

pid Constructs a proportional-integral-derivative (PID) controller model

randss Generates a continuous random state-space system model

randtf Generates a continuous random system model in transfer function form
randzpk Generates a continuous random system model in zero-pole-gain (ZPK) form

z5 Creates a system model in, or converts a model to, state-space form

Constructs a digital filter in transfer function form

Constructs the components of a first-order system model

? | Constructs the companents of a second-order system model

tf Creates a systemn madel in, or converts a madel to, transfer function form

zplk Constructs a system maodel in, or converts a model to, zero-pole-gain form

Below we will give some examples of how to use the most import functions in this class.

5.1.1 PID

Currently, the Proportional-Integral-Derivative (PID) algorithm is the most common control algorithm used in
industry.

In PID control, you must specify a process variable and a setpoint. The process variable is the system parameter
you want to control, such as temperature, pressure, or flow rate, and the setpoint is the desired value for the
parameter you are controlling.

A PID controller determines a controller output value, such as the heater power or valve position. The
controller applies the controller output value to the system, which in turn drives the process variable toward
the setpoint value.

Then the PID controller calculates the controller action, u(t):

1t de
u(t) =K, e+if0 edt+TdE

Where
K. Controller gain
T; Integral time
T, Derivative time
And e isthe error
e=SP—-PV
SP —Setpoint

PV — Process Variable

Tutorial: LabVIEW MathScript

30 Control Design and Simulation

Function: pid

Description:

Constructs a proportional-integral-derivative (PID) controller model in either parallel, series, or academic form.

Examples:

[End of Example]

5.1.2 STATE-SPACE MODEL
A state-space model is just a structured form or representation of the differential equations for a system.
A linear State-space model:

x = Ax + Bu

y=Cx+Du
where x is the state vector and u is the input vector. A is called the system-matrix, and is square in all cases.
Example:
The differential equations:

X, = —2x, + 6u
X, = 2x4

May be written on state-space form:

[e]= 0" el + [l

Function: ss

Description:

This function constructs a continuous or discrete linear system model in state-space form. You also can use this
function to convert transfer function and zero-pole-gain models to state-space form.

Examples:

' % Creates a state-space model
A = eye(2)

Tutorial: LabVIEW MathScript

31 Control Design and Simulation

B = [0; 1]
i C = B"
' SysOutSS = ss(A, B, C)

' % Converts a zero-pole-gain model to state-space form
z=1

'p = [1, -1]

k=1

?Sysln = zpk(z, p, k)

ESysOutSS = ss(SyslIn)

[End of Example]

5.1.3 TRANSFER FUNCTION

The transfer function of a linear system is defined as the ratio of the Laplace transform of the output variable
to the Laplace transform of the input variable.

Function tf

Description:

This function creates a continuous or discrete linear system model in transfer function form. You also can use
this function to convert zero-pole-gain and state-space models to transfer function form.

Examples:

This specifies that you want to create the continuous transfer function s / 1. After you enter this command, you
can use LabVIEW MathScript operands on this transfer function to define a zero-pole-gain or transfer function
model.

——

This example constructs the transfer function model 353 + 2 / 4574 + 8.

[End of Example]

Tutorial: LabVIEW MathScript

32 Control Design and Simulation

5.1.4 FIRST ORDER SYSTEMS

The following transfer function defines a first order system:

H(s) =
(s) Ts +1

Where
K isthe gain
T is the Time constant

Function sys_orderl

Description:

This function constructs the components of a first-order system model based on a gain, time constant, and
delay that you specify. You can use this function to create either a state-space model or a transfer function
model, depending on the output parameters you specify.

Inputs:
K Specifies the gain matrix. K is a real matrix.

tau Specifies the time constant, in seconds, which is the time required for the model output to reach 63% of its
final value. The default value is 0.

delay Specifies the response delay of the model, in seconds. The default value is 0.

Examples:

[End of Example]

5.1.5 SECOND ORDER SYSTEMS
A standard second order transfer function model may be written like this:

y(s) o Kwoz K

u(s) s242¢wys + wy? (i
Wy

H(s) = 5 S
) +2 -+ 1

Where
K is the gain

{(zetais the relative damping factor

Tutorial: LabVIEW MathScript

33 Control Design and Simulation

wo[rad/s] is the undamped resonance frequency

Function sys_order2

Description:

This function constructs the components of a second-order system model based on a damping ratio and
natural frequency you specify. You can use this function to create either a state-space model or a transfer
function model, depending on the output parameters you specify.

[num, den] = sys order2(wn, dr)
SysTF = tFf(num, den)

' [A, B, C, D] = sys_order2(wn, dr)
. SysSS = ss(A, B, C, D) |

[End of Example]

Class: connect

Description:

Use members of the connect class to connect systems models together in various configurations.

Below we see the different functions available in the connect class:

Function | Description

append Appends system models together

diag Constructs a system model whose diagonal contains copies of another model

feedback [Connects two systemn models in a closed-loop configuration

hconcat |Horizontally concatenates two or more system models.

parallel Connects two systemn models together in a parallel configuration
zeries Connects two system models together in a serial configuration

vooncat | Wertically concatenates two or more system models

Function series

Description:

Tutorial: LabVIEW MathScript

34 Control Design and Simulation

This function connects two system models in series to produce a model SysSer with input and output
connections you specify. The input models must be either continuous models or discrete models with identical
sampling times.

Example:

' SysIn_1 = tf([1, 1], [1 -1, 31)
 SysiIn_2 = zpk([1], [1, -1], 1)

[End of Example]

Class: convert

Description:

Use members of the convert class to convert a continuous system model to a discrete model, convert a discrete
model to a continuous model, and resample a discrete model. You also can use members of this class to
incorporate delays into a system model.

Below we see the different functions available in the convert class:

Function Description

c to d Converts a continuous system model to a discrete model
d to c Converts a discrete system model to a continuous one

d to d Fezamples a discrete system model

delav to = Incorporates delays into a discrete system maodel

distributedelay [Minimizes transport delay in a system model

pade Incarpaorates delays into a cantinuous system model by using Pade approximation
polvcoef Specifies whether transfer function coefficients are in ascending or descending direction
=z to == Applies a state transfarmation to a system model

5.1.6 PADE-APPROXIMATION
The Transfer function of a time-delay is:
H(s) =e™™

—Ts

In some situations it is necessary to substitute e with an approximation, e.g., the Padé-approximation:

s LT—kys +kps? 4 £ ks
T 14 kyS + kyS2 4 -+ ks

Function: pade

Description:

Tutorial: LabVIEW MathScript

35 Control Design and Simulation

This function incorporates time delays into a system model using the Pade approximation method, which
converts all residuals. You must specify the delay using the set function. You also can use this function to
calculate coefficients of numerator and denominator polynomial functions with a specified delay.

Example:

' sysCon = zpk(1, 3.2, 6)
. SysCon = set(SysCon, "inputdelay®, 6, “outputdelay®, 1.1)
SysDel = pade(SysCon, 2)

1.2
order = 3
[num, den] = pade(delay, order)

o
)
Q
<
1

[End of Example]

5.2 FREQUENCY RESPONSE ANALYSIS

The frequency response of a system is a frequency dependent function which expresses how a sinusoidal signal
of a given frequency on the system input is transferred through the system. Each frequency component is a
sinusoidal signal having a certain amplitude and a certain frequency.

The frequency response is an important tool for analysis and design of signal filters and for analysis and design
of control systems.

The frequency response can found experimentally or from a transfer function model.

The frequency response of a system is defined as the steady-state response of the system to a sinusoidal input
signal. When the system is in steady-state it differs from the input signal only in amplitude (A4) and phase angle
(w).

If we have the input signal:
u(t) = U sinwt
The steady-state output signal will be:
y(t) = UA sin (wt + ¢)

Aand ¢ is a function of the frequency w so we may write A = A(w), p = p(w)

For a transfer function

y(s)
H(S) =——
() 20s)

We have:

Tutorial: LabVIEW MathScript

36 Control Design and Simulation

|A(w) = |H(jw)||

[$p(w) = 2H(jw)]

Where H(jw) is the frequency response of the system, i.e., we may find the frequency response by setting
S = jw in the transfer function.

5.2.1 BODE DIAGRAM

Bode diagrams are useful in frequency response analysis. The Bode diagram consists of 2 diagrams, the Bode
magnitude diagram, A(w) and the Bode phase diagram, ¢(w).

The A(w)-axis is in decibel (dB)
Where the decibel value of x is calculated as: x[dB] = 20log,x
The ¢(w)-axis is in degrees (not radians)

Function: bode

Description:

This function creates the Bode magnitude and Bode phase plots of a system model. You also can use this
function to return the magnitude and phase values of a model at frequencies you specify. If you do not specify
an output, this function creates a plot.

Examples:

We want to plot the Bode diagram for this transfer function:

Tutorial: LabVIEW MathScript

37 Control Design and Simulation

. Plot 1

File Items Tools Help

Bode Flats

Magnitude
a
10—
20—

.
i
.
.

7=, 1 1 1 1 ! 1
0,001 0,01 0,1 1 10 100 1E+3

Phase

Fhase {deg)

.
-
.
.

-laa-, 1 1 1 1 ! 1
0,001 0,01 0,1 1 10 100 1E+3

Frequency {radjs)

In MathScript we could write:

- num=[1];
- den=[1,1];
§H1=tf(num,den)

bode(H1) i

i
|
o e o |

[End of Example]

Function: margin

Description:

This function calculates and/or plots the smallest gain and phase margins of a single-input single-output (SISO)
system model.

The gain margin indicates where the frequency response crosses at 0 decibels (“crossover frequency”, w,).
|H(iwe)l
. is also the bandwidth of the system
The phase margin indicates where the frequency response crosses -180 degrees (“crossover frequency”, w;gg)-
£H(jwyg0)

Examples:

Tutorial: LabVIEW MathScript

38 Control Design and Simulation

The following example illustrates the use of the margin function.

(o}

(1)

=)
1l

[1, 5, 6]
EH = tf(num, den)

émargin(H)

[End of Example]

Example:

Given the following system:

H(S) =

We want to plot the Bode diagram and find the crossover-frequencies for the system using MathScript.
We use the following functions: tf, bode, margins and margin.

e gmfis the gain margin frequencies, in radians/second. A gain margin frequency indicates where the
model phase crosses -180 degrees.

e gm Returns the gain margins of the system.

e pmf Returns the phase margin frequencies, in radians/second. A phase margin frequency indicates
where the model magnitude crosses 0 decibels.

e pm Returns the phase margins of the system.

e Weget:

Tutorial: LabVIEW MathScript

39 Control Design and Simulation

! Lab¥IEW MathScript

File Edt Wew Operate Tools Window Help

Qutput Window
phase_data =

Variables | Script | History

o1 1. 146 @ ['_E” M:work|LabiLab WorkiMathScript LabhSolutionstCodel Task 74 |

0.0

0.1 -101. 42 % Transfer function A
0.z -112.62 nurm=[1];
0.5

>

denl=[1,0];
denz=[1,1]
den3=[1,1]

100 —-268.85 den = canv({denl, conv({den2,den3));

Guf = H = tF{num, den)

Loy % Biode Plot

bode{H)

% Margins and Phases
0.99931 whist=[0.01, 0.1, 0.2, 0.5, 1, 10, 100];

[mag, phase,w] = bode(H, wlist);
magdE=20*o0g10{mag); Yeconverk to dB
21.3868
% [mag, phase,w] = bode(H);
pm = mag_data = [w, magdE]
phase_data = [w, phase]
0.656233
o Crossover Frequeny-----—----=--m-ssmsmmesmeen oo

[gmf, gm, pmf, pm] = margins{H)
margin{H)

[

Command YWindow

| >

|9 (1]} | Id; Line: &, Column: 1 |

Below we see the Bode diagram with the crossover-frequency and the gain margin and phase margin for the
system plotted in:

Eile Items Tools Help

Graph 1
a0 -
w0 (U} ra
L e B B B o e s I s By oy B e iy
o
% 50— Gain Margin |~
z PM Crossover [T+
E -100-
s}
=
-150-
=200, 1 1 1 1
100 1 10 100 1k

Frequency (rads)

w0 (L) P
-180%k deg b® g
g Phase Matgin [
B B S e B DN S o e e B T} LT o T B e =
n GM Crossover (™
2
o
=275 | 1 | 1
100 1 10 100 1k

Frequency (radjs)

[End of Example]

Tutorial: LabVIEW MathScript

40 Control Design and Simulation

TIME RESPONSE

Class: timeresp

Description:

Use members of the timeresp class to create generic linear simulations and time domain plots for step inputs,
impulse inputs, and initial condition responses.

Below we see the different functions available in the timeresp class:

Function |Description

impulse Creates the impulze responsze plot of a system model
initial Creates the initial response plot of a system model

l=im Creates the linear simulation plot of a system model

randvector| Generates ane or two random vectors

ztep Creates the step response plot of a system model

Function: step

Description:

This function creates a step response plot of the system model. You also can use this function to return the
step response of the model outputs. If the model is in state-space form, you also can use this function to return
the step response of the model states. This function assumes the initial model states are zero. If you do not
specify an output, this function creates a plot.

Example:

Given the following system:

s+1

H(S)=52—5+3

We will plot the time response for the transfer function using the step function

The result is as follows:

Tutorial: LabVIEW MathScript

41 Control Design and Simulation

B Plot 1
Eile Edit ‘iew Project Operate Tools ‘Window Help

Graph Step Response
F

Amnplitude

Time (5

The MathScript code:

H = tf([1, 1], [1, -1, 31)
Estep(H)

[End of Example]

Tutorial: LabVIEW MathScript

JE O BT,
6 MATHSCRIPT NODE

The “MathScript Node” offers an intuitive means of combining graphical and textual code within LabVIEW. The
figure below shows the “MathScript Node” on the block diagram, represented by the blue rectangle. Using
“MathScript Nodes”, you can enter .m file script text directly or import it from a text file.

|13 fir_fittar.vi Black Diagram =l
Be Edt e Progedt Operale Teok Wiedow Hels . @
2]@] o[m][9] 2] noler]s [ssckcaten rore [~ J[2o~][5-] [5-] 2] #l
-~
kot
|3”_"‘ ' | fpts = [0 fstoplow fpassiow];
T Uhsrentow o amplitude = [001.0 1.0);
s [.. S0 b=fir2(taps, fipts, amplitude); ih F Giagh
[fpassion MMFI=freaate, 11592, 1 Al =
i | sH = 20" log (abs(H)): = [
6 157 s .A I
[L
[firZ designs a linegr-phase FIR filter using frequency sampling|
W
& B

MathScript
Node

You can define named inputs and outputs on the MathScript Node border to specify the data to transfer
between the graphical LabVIEW environment and the textual MathScript code.

You can associate .m file script variables with LabVIEW graphical programming, by wiring Node inputs and
outputs. Then you can transfer data between .m file scripts with your graphical LabVIEW programming. The
textual .m file scripts can now access features from traditional LabVIEW graphical programming.

The MathScript Node is available from LabVIEW from the Functions Palette: Mathematics - Scripts & Formulas

[~ I
e WM™

uj

Formula Mode Scripk Modes

abc ’
b f[H)
Formula Formula Parsing
3 3 : 3
I R vl R
10 & 2D Eval. .. Calculus Zeros

42

43

MathScript Node

If you click Ctrl+H you get help about the MathScript Node:

input vatiable
[opticnal)
input vatiable
[opticnal)
aHFOF N =

Executes LabWIEW MathScripts and yvour okher bext-based scripks using the
MathScripk BT Module engine, You can use the MathScript Mode to evaluate

4] 1

z

=@ Sumd = Sumd + A% ifFactoral(]);

E

MathScript Node

Sumb = eyelsize(A));
fari= 1:n

end
Delta = Sumd - expricli);

scripks that wou create in the LabYIEW MathScript Window,

If a MathScript Mode contains a warning glvph, LabYIEW operates with slower
run-time performance For the node, You can modify your script to remove the
warning gkvph from the MathScript Mode and improwve run-time performance.

Detailed help

M
output vatiable
[optional)
= airar aut
W
A

Click “Detailed help” in order to get more information about the MathScript Node.

Use the NI Example Finder in order to find examples:

NI Example Finder |'”_IE|
EBrowse Search | Subrmit Double-click an example ko open it Information
o input ~ b
Erowse according bo: o instr |
() Task) internet
i hedsc
fs\ Directary Structure 2 lvoop
i math
—}bilath Plo
i
5 LabVIEW Zone [
. CONKECT TO ¥OUR COMMUNITY CHPE - Heat Equation
Heat Equation.+i =
- IE:::‘:r"u Articlas 5] MathScript - Paralel Fractal
Farallel Fractal (split).vi =
Ql@ E:E;“iﬁn ti Rasources Parallel Fractal {typical).vi m
Update Fractal wi
& | Code S, || Usar i ibrari §
b Sharing 2 A 25) MathScript Shared Libraries 3
MathScript - Calling a Windows DLL i i) =
o‘ sc:.g:u MathScript - Using shared libraries, vi i) Requirerments
MathScript Shared Libraries. lvproj @
Visit LabYIEW Zone) MathScript. using Rieltnann Zeta
MathScript using Riemann Zeta,vi i
MathScript Fractal,vi =
[J1nciude ri.com examples MathiScript Fundarnentals, vi i1
. i.com query timeout T max
.l measure
Hardware) Modulation
| Find hardware v | =1 mation -]
[Limit resulks ta hardware Add to Favorites | [Setup...] [Help] [Close]

6.1

TRANSFERRING MATHSCRIPT NODES BETWEEN COMPUTERS

If a script in a MathScript Node calls a user-defined function, LabVIEW uses the default search path list to link
the function call to the specified .m file. After you configure the default search path list and save the VI that
contains the MathScript Node, you do not need to reconfigure the MathScript search path list when you open
the VI on a different computer because LabVIEW looks for the .m file in the directory where the .m file was

Tutorial: LabVIEW MathScript

44 MathScript Node

located when you last saved the VI. However, you must maintain the same relative path between the VI and
the .m file.

6.2 EXAMPLES

Example: Using the MathScript Node

Here is an example of how you use the MathScript Node. On the left border you connect input variables to the
script, on the right border you have output variables. Right-click on the border and select “Add Input” or “Add
Output”.

[The MathScript Node can be Found in the Functions = >Mathematics = =Scripks & Formulas Palette, |

MathScripk Mode
k] Inde:x Array

%o Comments are preceded by % @

—_

fe1) in LabVIEW

g °."'o)(=[123]j --=|:| 3
4 %a Souare each element of x to get s b = w2
5 Vo=, '
5]
7 % Extract wi1) k(13 in MathScript Mods|
5 yl=wily J
9
10 % Caloulake the Dot Product of x am Dot Product
11 d = dok{x,v); J
12

Boat]

1. To add an input {oukput)
ko the MathScript node,
right-click on the node and
select Add Input (Add
(Cuktput),

2. Scripks can be typed in
the MathScript node, or
imported by right-clicking on
the node and selecting
Irnpork.

3. To change the datatype
of an oukput, right-click on
the output and seleck
“hoose Data Type.,

4, Uze the Index Array W1 to
exkrack the “first” element
of v, Cutside of the
MathScript node, LabyIEW
arrays are zero-indexed,

[End of Example]

Example: Calling a Windows DLL:

[Build the path to the header file. LLoad the Windows DLL. [Calculate the cursor position and call the Windows DLL.| [Unload the Windows DLL.|
[If this example is built into an ib
lapplication, it will look for the file Bteps|
lin the application’s data directory. [132} N
miE theta = Z¥pi*i | M;
2 x=Cx+r ¥ cositheta);
] M| 3 w=Cy+r*sin(theta);
4 lib_callin, 'SetCursorPos, x, v);
T i ~lib_istoadedin) 00— 1 lib_uniosd(n);
u 2 lib_load{library, header, ‘alias’, ni; m
Sap 8 [lDefai] ibrary] 2 =nd -
AppKind M
N iﬂ.k sader oy
= 51|
[E] :t‘u:u e 7

ircle Radius
Kpixels

¥

ircle Centre
kpixels from the scre i

[End of Example]

Tutorial: LabVIEW MathScript

45

MathScript Node

Example: Using m-files in the MathScript Node:

B LabVIEW MathScript

File Edit ‘Yiew Operate Tools ‘Window Help

Qutput Window Yariables | Script ‘ Histary |
For help, enter 'help classes!' A =
= T @ J|_] | i TemphLabWIEW Data'lcalcx.m|
Unknown sywhol on line 1: 4 a1 23 4]; 2
b={56]; 0
FxAi[1 Z2:3 4]: x=inviAi*b
b=[5;6]1;
x=inwv (i) *b
Unknown sywhbol on line 1: 4
b
x =
-4
4.5
™
)\
Command 'Window
~
b !
oD e Line! ¢, Calumn! 1

Right-click on the border of the MathScript Node and select “Import”, and then select the m-file you want to

import into the Node.

Tutorial: LabVIEW MathScript

46

MathScript Node

a=[12;3 4]
b=(5;5];
w=irv (B8R

YWisible Items
Help

Examples
Description gnd Tip. ..

Skruckures Palette 3

Clear Scripk
Clear Script Breakpoinks

Properties

Right-click on the right border and select “Add Output”. Then right-click on the output variable and select

“Create Indicator”.

Block Diagram:

a=[1 23 4]
b=(5;5];
w=inv (8D

The result is as follows (click the Run button):

| 1=
Di Di
&=
i

IDEL]

If you, e.g., add the following command in the MathScript Node: plot(x), the following window appears:

Tutorial: LabVIEW MathScript

47 MathScript Node

File Items Tools Help

Graph

1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 z

[End of Example]

6.3 EXERCISES

Use the MathScript Node and test the same examples you did in the previous chapter (Chapter 4 - “Linear
Algebra Examples”)

Tutorial: LabVIEW MathScript

:_W‘P 1@ h\ll\ﬁ;ﬁ%f

The MATLAB Script calls the MATLAB software to execute scripts. You must have a licensed copy of the
MATLAB software version 6.5 or later installed on your computer to use MATLAB script nodes because the
script nodes invoke the MATLAB software script server to execute scripts written in the MATLAB language

syntax. Because LabVIEW uses ActiveX technology to implement MATLAB script nodes, they are available only
on Windows.

MATLAE scripk

48

JL O HIH

APPENDIX A — MATHSCRIPT FUNCTIONS FOR CONTROL AND SIMULATION

Here are some descriptions for the most used MathScript functions used in this Lab Work.

Function Description Example
plot Generates a plot. plot(y) plots the columns of y against the >:(< =)Eoi)(z-Ol:l] ;
> = . ;
indexes of the columns. >plot(X, Y)
tf Creates system model in transfer function form. You also can >num=[1];
use this function to state-space models to transfer function >den=[1, 1, 1];
form. >H = tf(nhum, den)
poles Returns the locations of the closed-loop poles of a system >num=[1]
model. >den=[1,1]
>H=tf(num,den)
>poles(H)
tfinfo Returns information about a transfer function system model. >[num, den, delay, Ts] =
tfinfo(SysInTF)
step Creates a step response plot of the system model. You also can >num=[1,1];
use this function to return the step response of the model >den=[1,-1,3];
outputs. If the model is in state-space form, you also can use this | >H=tf(num,den);
function to return the step response of the model states. This >t=[0:0.01:10];
function assumes the initial model states are zero. If you do not >step(H,t);
specify an output, this function creates a plot.
Isim Creates the linear simulation plot of a system model. This >t = [0:0.1:10]
function calculates the output of a system model when a set of >u = sin(0-1*pi*t)”
inputs excite the model, using discrete simulation. If you do not | >Isim(SysiIn, u, ©)
specify an output, this function creates a plot.
Sys_orderl | Constructs the components of a first-order system model based | >K = 1;
on a gain, time constant, and delay that you specify. You can use | >tau = 1;
this function to create either a state-space model or a transfer >H = sys_orderl(K, tau)
function model, depending on the output parameters you
specify.
Sys_order2 Constructs the components of a second-order system model >dr = 0.5
based on a damping ratio and natural frequency you specify. You | >wn = 20
can use this function to create either a state-space model or a >[num, den] = sys_order2(wn, dr)
transfer function model, depending on the output parameters >SysTF = tf(num, den)
you specify. >[A, B, C, D] = sys_order2(wn, dr)
>SysSS = ss(A, B, C, D)
damp Returns the damping ratios and natural frequencies of the poles | >[dr, wn, p] = damp(SysIn)
of a system model.
pid Constructs a proportional-integral-derivative (PID) controller >Ke = 0.5;
model in either parallel, series, or academic form. Refer to the >Ti = 0.25;
LabVIEW Control Design User Manual for information about >SysOutTF = pid(Ke, Ti,
these three forms. academic’):
conv Computes the convolution of two vectors or matrices. >C1 = [1, 2, 3];

>C2 = [3, 41;

49

50 Error! Reference source not found.
>C = conv(C1, C2)
series Connects two system models in series to produce a model >Hseries = series(H1,H2)
SysSer with input and output connections you specify
feedback Connects two system models together to produce a closed-loop | >SysClosed = feedback(SyslIn_1,
. . . . Sysin_2)
model using negative or positive feedback connections
ss Constructs a model in state-space form. You also can use this >A = eye(2)
function to convert transfer function models to state-space >B = [0; 1]
form. >C = B”
>SysOutSS = ss(A, B, C)
ssinfo Returns information about a state-space system model. >A = [1, 15 -1, 2]
>B = [1, 2]*
>C = [2, 1]
>D =0
>SysInSS = ss(A, B, C, D)
>[A, B, C, D, Ts] = ssinfo(SysInSS)
pade Incorporates time delays into a system model using the Pade >[num, den] = pade(delay, order)
approximation method, which converts all residuals. You must >[A, B, C, D] = pade(delay, order)
specify the delay using the set function. You also can use this
function to calculate coefficients of numerator and denominator
polynomial functions with a specified delay.
bode Creates the Bode magnitude and Bode phase plots of a system >num=[4];
model. You also can use this function to return the magnitude >den=[2, 1];
and phase values of a model at frequencies you specify. If you >H = tf(nhum, den)
do not specify an output, this function creates a plot. >bode(H)
bodemag Creates the Bode magnitude plot of a system model. If you do >[mag, wout] = bodemag(SyslIn)
not specify an output, this function creates a plot. >[mag, wout] = bodemag(Syslin, [wmin
wmax])
>[mag, wout] = bodemag(Syslin,
wlist)
margin Calculates and/or plots the smallest gain and phase margins of a | >num = [1]
single-input single-output (SISO) system model. The gain margin | >den = [1, 5, 6]
indicates where the frequency response crosses at 0 decibels. >H = tf(num, den)
The phase margin indicates where the frequency response margin(H)
crosses -180 degrees. Use the margins function to return all gain
and phase margins of a SISO model.
margins Calculates all gain and phase margins of a single-input >[gnf, gm, pmf, pm] = margins(H)

single-output (SISO) system model. The gain margins indicate
where the frequency response crosses at 0 decibels. The phase
margins indicate where the frequency response crosses -180
degrees. Use the margin function to return only the smallest
gain and phase margins of a SISO model.

For more details about these functions, type “help cdt” to get an overview of all the functions used for Control

Design and Simulation. For detailed help about one specific function, type “help <function_name>".

Plots functions: Here are some useful functions for creating plots: plot, figure, subplot, grid, axis, title, xlabel,

ylabel, semilogx — for more information about the plots function, type “help plots”.

Tutorial: LabVIEW MathScript

L= [

i
Hegskolen i Telemark

Telemark University College
Faculty of Technology
Kjglnes Ring 56
N-3914 Porsgrunn, Norway

www.hit.no

Hans-Petter Halvorsen, M.Sc.
Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Phone: +47 3557 5158
E-mail: hans.p.halvorsen@hit.no
Blog: http://home.hit.no/~hansha

Room: B-237a

http://www.hit.no/�
mailto:hans.p.halvorsen@hit.no�
http://home.hit.no/~hansha/�

	Preface
	Table of Contents
	Introduction to LabVIEW
	Dataflow programming
	Graphical programming
	Benefits
	LabVIEW MathScript RT Module

	LabVIEW MathScript RT Module
	LabVIEW MathScript
	Introduction
	Help
	Examples
	Useful commands
	Calling functions In MathScript
	User-Defined Functions In MathScript
	Scripts
	Flow Control
	If-else Statement
	Switch and Case Statement
	For loop
	While loop

	Plotting

	Linear Algebra Examples
	Vectors
	Matrices
	Transpose
	Diagonal
	Triangular
	Matrix Multiplication
	Matrix Addition
	Determinant
	Inverse Matrices

	Eigenvalues
	Solving Linear Equations
	LU factorization
	The Singular Value Decomposition (SVD)
	Commands

	Control Design and Simulation
	State-space models and Transfer functions
	PID
	State-space model
	Transfer function
	First Order Systems
	Second Order Systems
	Padé-approximation

	Frequency Response Analysis
	Bode Diagram

	Time Response

	MathScript Node
	Transferring MathScript Nodes between Computers
	Examples
	Exercises

	MATLAB Script
	Appendix A – MathScript Functions for Control and Simulation

